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Regular endurance exercise training induces beneficial functional and health effects in human skeletal muscle. The
putative contribution to the training response of the epigenome as a mediator between genes and environment has
not been clarified. Here we investigated the contribution of DNA methylation and associated transcriptomic changes in
a well-controlled human intervention study. Training effects were mirrored by significant alterations in DNA
methylation and gene expression in regions with a homogeneous muscle energetics and remodeling ontology.
Moreover, a signature of DNA methylation and gene expression separated the samples based on training and gender.
Differential DNA methylation was predominantly observed in enhancers, gene bodies and intergenic regions and less in
CpG islands or promoters. We identified transcriptional regulator binding motifs of MRF, MEF2 and ETS proteins in the
proximity of the changing sites. A transcriptional network analysis revealed modules harboring distinct ontologies and,
interestingly, the overall direction of the changes of methylation within each module was inversely correlated to
expression changes. In conclusion, we show that highly consistent and associated modifications in methylation and
expression, concordant with observed health-enhancing phenotypic adaptations, are induced by a physiological
stimulus.

Introduction

Endurance exercise training is a strong physiological stimulus
that leads to a multitude of health and functional improve-
ments when performed regularly. The health benefits include
prevention and/or treatment of a multitude of the most com-
mon diseases, e.g., cardiovascular disease, type II diabetes, and

several forms of cancer.1 The health benefits following exercise
training are elicited by gene expression changes in skeletal
muscle, which are fundamental to the remodeling process.2

Epigenetic modifications through DNA methylation regulate
gene transcription.3 DNA methylation has traditionally been
considered to be a mitotically stable modification that could
change only over long periods of time, e.g., in disease
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development 4-6 and during the general aging process.7,8 How-
ever, there is increasing evidence that more short-term environ-
mental factors can influence DNA methylation. For example,
dietary factors have the potency to alter the degree of DNA
methylation in different tissues, 9,10 including skeletal muscle,11

while exercise is less well studied. In one study, a single bout of
endurance-type exercise was shown to affect methylation at a
few promoter CpG sites.12 In the context of diabetes, exercise
training has been shown to affect genome-wide methylation
pattern in skeletal muscle,13 as well as in adipose tissue.14

Together, those data indicate that physiological stressors can
indeed affect DNA methylation.

Adaptation in skeletal muscle depends on successive transient
increases in mRNA encoding regulatory, metabolic, and struc-
tural proteins.15 However, the acute changes in gene expression
are quite different from the more robust basal alterations that
characterize a well-adapted muscle after a major lifestyle change,
e.g., months of regular exercise.

In order to obtain a deeper understanding of the mechanisms
underlying the massive functional and health benefits of regular
exercise, we conducted a 3-month fully supervised human one-
legged exercise training study. Training only one leg allowed for
an intraindividual control, thereby excluding potential influence
of diet, seasonal changes or unknown environmental factors,
which are expected to affect both legs equally. We observed that
the training intervention reshapes the epigenome and induces
significant changes in DNA methylation, and the global frac-
tions of decreased and increased methylation sites were similar.
Importantly, changes in DNA methylation were enriched in
regulatory enhancer regions. Functional categories related to
muscle biology (e.g., regulation of cellular carbohydrate metabo-
lism and structural remodeling) were overrepresented among
differentially methylated sites. In addition, a coordinated tran-
scriptional and epigenetic response was identified through net-
work analysis.

Together, the findings from this tightly controlled human
study strongly suggest that the regulation and maintenance of
exercise training adaptation is to a large degree associated to epi-
genetic changes, especially in regulatory enhancer regions.

Results

Endurance exercise training induces global alterations
in DNA methylation

Twenty-three young volunteers (Table 1), not regularly per-
forming intense exercise, performed supervised one-legged knee-
extension exercise training for 3 months (45 min, 4 sessions per

week; Figure S1A), training only one randomized leg (trained
leg), while the second leg (untrained leg) was used as an intraindi-
vidual control leg. Skeletal muscle biopsies from the vastus latera-
lis were taken from both legs at rest, before and after the training
period (see Supplementary Methods S9 for details). Performance
improvements and enzyme activity increases in the trained leg
confirmed that the training response was highly significant
(P < 10¡4, Fig. 1A-B and Figure S1B-C).

To address the effect of training on DNA methylation of spe-
cific sites across the human skeletal muscle genome we used the
Illumina Infinium HumanMethylation450 arrays. Endurance
training [after training (T2) vs. before training (T1)] induced sig-
nificant (false discovery rate, FDR< 0.05) methylation changes
at 4919 sites across the genome in the trained leg (Fig. 1C, Data-
set S13). Of these, 839 sites had an absolute change of at least
5% in their mean methylation level (b-value) after training, with
a maximum of 9%. The corresponding transcriptional analysis
was performed using RNA sequencing, which identified 4076
differentially expressed genes (DEGs; Fig. 1D, Data set S13).
Ontology and pathway analysis of DEGs showed that the tran-
scriptional response robustly reflected key pathways involved in
training adaptation and a trained muscle phenotype (Figure S2-
S3 and Table S10). Clustering analysis identified training and
gender as the major determinants of variability on autosomal
DNA methylation and gene expression data (Fig. 1E). The clus-
tering was independent of gene expression on sex chromosomes,
as a corresponding grouping was obtained excluding genes on X
and Y chromosomes (data not shown). Moreover, a complemen-
tary approach revealed that over 600 CpG sites correlated to the
increase in citrate synthase activity, an objective measure of train-
ing response (Figure S4 and Dataset S14). This might imply
that some of these sites could influence the degree of training
response.

Global cytosine methylation was also analyzed to look for
globally unidirectional changes by luminometric methylation
assay (LUMA),16 revealing no change in overall methylation lev-
els with training, and no difference between the trained and the
untrained leg (Figure S5A). Global CpG methylation was
remarkably similar both within the same subject and between all
subjects. This is consistent with the specific observations from
the array data of approximately equal number of sites increasing
and decreasing in methylation and no significant change in the
sample average methylation after training. Analysis of global
hydroxymethylation levels resulted in no overall change with
training (Figure S5B).

As expected by a physiological environmental trigger on adult
tissue, the observed effect size on DNA methylation was small in
comparison to disease states such as cancer.9 Hence, to exclude

Table 1. Baseline subject characteristics for males (n D 12), females (n D 11) and all subjects (n D 23). Data is presented as mean§ SEM. For details on the
training program see Figure S1.

Age (yrs) Height (cm) BMI (kg/m2) Peak VO2 (ml*kg¡1*min¡1)

Males 27.5§ 0.97 181§ 2 24.8§ 1.3 39.5§ 1.1
Females 26.4§ 1.31 169§ 2 23.2§ 0.9 38.4§ 1.2
All subjects 27.0§ 0.79 175§ 2 24.0§ 0.8 39.0§ 0.8
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possible technical artifacts leading to
false positive associations, we selected
several genomic positions for bisulfite
pyrosequencing validation. Overall, the
methylation levels significantly corre-
lated with the 450K array data (Figure
S5C). Out of 7 selected sites, we
observed the same direction of change
for 6 positions (up/down/no change),
thus providing support on the reliability
of our data. The untrained leg was also
included in the validation to verify that
the observed changes were indeed an
effect of the training itself and not due
to other environmental effects. No significant change was
detected in the untrained leg. For details, see Figure S5D-J and
the corresponding text. Moreover a Q-Q plot for the array results
is showed in Figure S8.

Enrichment of training-induced DMPs in enhancers
Annotation of the differentially methylated positions

(DMPs) revealed a preferential localization outside of CpG
Islands/Shelves/Shores. When considering the positioning of

Figure 1. Effects of endurance exercise
training are mirrored by alterations in
DNA methylation and gene expression.
The significant (* D P < 10¡4) effect of
training in the trained leg is shown by the
increase in a 15 min performance test (A)
and the citrate synthase activity in muscle
biopsies (B) in T2 (after training) vs. T1
(before training). For comparison, the
untrained leg is also shown, where a
smaller change is observed in performance
and no change in CS activity. # indicates
significant differences between the
changes in the 2 legs. Additional physiolog-
ical measurements are shown in Figure
S1B-C. The physiological changes are mir-
rored by modifications in DNA methylation
(C) and gene expression (D). For DNA meth-
ylation, the effect size is measured as the
difference in M-values and points in black
correspond to DMPs with FDR < 0.05. For
gene expression, the log2 (Fold Change) is
plotted against the average log2(Counts Per
Million) and red points correspond to genes
with FDR <0.05. Correlation between
changes in DNA methylation and CS activity
exists and results are shown in Figure S5.
The clustering of the samples is shown in
(E) using either DNA methylation (upper
panels) or gene expression (lower panels).
A segment connects to measurements
from the same subject obtained before and
after training. Samples are alternatively col-
ored by group (T1 D blue, T2 D red) or by
gender (M D green, F D magenta). For DNA
methylation, Principal Component Analysis
was employed using only autosomal DMPs,
while for gene expression the top 1000
genes with largest biological variation were
chosen and the biological coefficient of var-
iation used to produce a multidimensional
scaling plot.
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the DMPs with respect to the genes, we could also detect an
enrichment of the relative fraction of DMPs in gene bodies and
intergenic regions and fewer DMPs in promoter regions
(TSS200), as compared to the relative distribution of the probes
present in the array (Fig. 2A–B). Given these observations, we

asked whether the major source of the
DMPs could originate from enhancers.
Indeed, using the standard array anno-
tation, DMPs were significantly
enriched in enhancers (Fig. 2C). This
finding was further corroborated using
external sources of data and annota-
tions (see Supplementary Methods S9).
For example, when defining enhancers
based on histone marks (either
H3K4me1, H3K27ac, or H3K4me1
and H3K27ac jointly) and using
completely independent data from
human skeletal muscle tissue, we also
confirmed that the changing sites were
observed predominantly in enhancers
(Fig. 2C). Additional evidence came
from the definition of chromatin states
by a chromatin segmentation algorithm
and the corresponding public data
available for human myoblast cul-
tures.17 Here we observed an enrich-
ment, relative to the array background,
for strong and weak enhancers, but
not for promoters (Fig. 2D). We
also observed a slight preferential
enrichment in regions of accessible
chromatin, as defined by DNase
Hypersensitive Sites (Figure S6). These
observations have potential implica-
tions on the role of DNA methylation
on regulating gene expression, a phe-
nomenon likely mediated by altering
the methylation status of enhancers and
other regulatory elements.18-20

The finding that endurance training
especially influences enhancers is indubi-
tably novel in the context of tissue adap-
tation to a physiological stimulus in
humans. Therefore, we sought to iden-
tify the biological processes correspond-
ing to these regulatory regions.

Differential methylation is related
to genes governing muscle related
processes

To assess the putative physiological
relevance of the DMPs, we performed a
functional annotation and ontology
enrichment analysis, where we defined
an association rule that considered gene

regulatory domains (see Supplementary Methods S9). Indeed,
we detected a clear enrichment of muscle ontology related pro-
cesses for the genes in the vicinity of DMPs, demonstrating that
the top enriched categories of molecular function, biological pro-
cess and cellular component were linked to myogenesis as well as

Figure 2. DNA methylation changes are primarily localized in enhancers. (A–C) For each annota-
tion category, the relative fraction of positions located within each feature type is calculated for
DMPs (red bars), non-DMPs (blue bars) and the entire position on the array (green bar). Panels A-B
were obtained using Illumina annotation, while for panel C we used Illumina annotation (Enhancers)
or publicly available ChIP-seq experiments on HSMM cells from which we derived H3K4me1 and
H3K27ac peaks. The presence of H3K27ac mark denotes an active regulatory element, while
H3K4me1CH3K27ac marks active enhancers and other distal elements. (D) The log2 fold enrichment
for DMPs vs. the array was calculated for the relative fraction of probes falling in each category; data
from chromatin segmentation algorithms in HSMM cells were used. For additional information, see
Supplementary Methods S9. Significance codes: *P < 0.05; ***P < 0.001; Fisher’s exact test.
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Figure 3. For figure legend, see page 1562.
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muscle structure, function and bioenergetics, in concordance
with a trained muscle phenotype (Fig. 3). This prompted to a
deeper characterization of DMPs, by extending bidirectionally
the sequence of the position (§100 bp) and examining the
enrichment of known transcriptional motifs. Concordantly, we
observed a significant enrichment for binding motifs of the MRF
(Myogenic Regulatory Factors), and MEF2 (Myocyte Enhancer
Factor 2) classes in DMPs increasing in methylation after train-
ing (Fig. 3 and Table S11). Conversely, for DMPs that decreased
their methylation level, an enrichment for the ETS family bind-
ing domain was observed (Fig. 3 and Table S11). The ETS tran-
scription factors have been strongly implicated for example in
angiogenesis,21 a key process in endurance exercise adaptation.

Specific differential methylation correlates with expression
changes in an exercise-dependent manner

The finding that differential DNA methylation is observed at
enhancers and regulatory regions with the associated enrichment of
muscle ontology processes suggests a functional link between
DNA methylation and RNA expression. To integrate those 2 data
types, we initially performed correlation analysis, in order to high-
light pairs of genes/methylation positions that showed dependence
after training. Overall, when all probe/position pairs were consid-
ered, the Spearman correlation was centered on zero (Fig. 4A),
revealing no sign of global trend. However, selection of the pairs
resulting from a DMP and a DEG revealed that an effect of exer-
cise training exists in specific genomic regions, indicated by peaks
of both positive and negative correlation (Fig. 4A) that were prefer-
entially observed according to the relation to gene regions.3 In par-
ticular, negative correlation was more prominent for probes in
promoter/50UTR/1st exon regions, while gene bodies had a stron-
ger peak of positive correlation (Fig. 4B).

In principle, since we are analyzing longitudinal observations
on the same subject before and after training, any detected pat-
tern of correlation between expression and methylation could
arise from the individual levels of methylation and gene expres-
sion being correlated at the subject level and not as a result of the
experimental intervention. Indeed, a Q-Q plot (Fig. 4C) revealed
that, after excluding DMP/DEG pairs, some residual correlation
remained and this behavior is most likely explained by the pres-
ence of some baseline level of correlation between DNA methyla-
tion and gene expression, that is not explained by training, but
instead by inter-individual factors (e.g., gender). However, when
considering only the DMP/DEG pairs, we reduced the number
of false positives or, in other words, we decreased the possibility
that the dependence is not explained by the endurance training.
This phenomenon is further exemplified by a starburst plot that
illustrates the relationship between DNA methylation and
expression changes (Fig. 4D). This integrative analysis identified
255 downregulated genes with significant increase in

methylation, 203 upregulated genes with significant increase in
methylation, 273 upregulated genes with significant decrease in
methylation, and 70 downregulated genes with significant
decrease in methylation. Those gene/position pairs correspond to
interesting examples of changes shaped by the training-specific
intervention and, therefore, provide the fraction of genes whose
expression-methylation correlation is changed in different direc-
tions. Individual examples selected among the top-correlated
genes are given in Figure 4D. We found several interesting genes
in the context of muscle physiology and metabolism. Examples
include the MIPEP gene that encodes for a mitochondrial pepti-
dase, primarily involved in the maturation of proteins involved
in oxidative phosphorylation,22 and GRK5, a GPCR kinase
involved in multiple biological processes, proposed as a positive
regulator of insulin sensitivity in mouse.23 In turn, some of the
highly correlated gene/methylation probes were not differentially
regulated after training, including many HLA genes and other
genes whose expression could possibly be influenced by individ-
ual genotypes24 and not by the experimental intervention. This is
exemplified by THNSL2 (in the bottom left panel of Fig. 4D),
whose bimodal expression has been linked to a cis-eQTL in mus-
cle tissue.25 For more examples, see Table S12.

Integrating transcriptional network analysis with DNA
methylation identifies a coordinated training response

Having established that DNA methylation alterations are
induced by training and are linked to corresponding genes that
are also regulated by exercise training, we asked whether we could
visualize epigenomic changes superimposed on a reconstructed
transcriptional network. Hence, we reverse-engineered a mutual
information-based transcriptional network (p < 10¡10) using
count data from DEGs alone and, in a second independent step,
we overlaid the DNA methylation data by summarizing the
methylation changes of the linked DMPs (Fig. 5). This analysis
uncovered 3 major network domains and some smaller modules
(Figures S7) that were grouped according to their relative fold
change (T2 vs. T1) that corresponded to distinct ontologies.
Domain A was overall downregulated (average log2FC D ¡0.31)
and was populated with genes annotated for regulation of gene
expression, DNA replication and cell cycle. Examples include
MDM2, a E3 ubiquitin-protein ligase that mediates ubiquitina-
tion of p53, ZNF638, a transcription factor associated to PPARG
expression,26 UACA involved in regulation of stress-induced apo-
ptosis 27 and CUL3, part of an E3 ubiquitin-protein ligase com-
plex and previously shown to decrease in expression with
endurance training.28 At the other extreme, domain C contained
upregulated genes (average log2FC D 0.60) involved in morpho-
logical changes, including cell adhesion, blood vessel develop-
ment and extracellular matrix organization. This domain
included genes that have been shown to increase in expression

Figure 3 (See previous page). Muscle related processes and factors are enriched in the up-methylated DMPs. GREAT analysis was performed to
retrieved functional categories associated with DMPs increasing or decreasing methylation after training. Up to top 5 categories passing the threshold
(see Supplementary Methods S9) are shown for GO Molecular Function, Biological Process and Cellular Component. We tested the presence of known
enriched motif on a symmetrical 200 bp window around each DMP (P < 10¡10, consensus motif shown). Known profiles were clustered and a familial
logo was drawn. For a corresponding ontology analysis of gene expression, see Figures S2-S3.
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with training, 28 such as several collagens (e.g., COL4A1 and
COL4A2), the protease inhibitor A2M, the adhesive glycoprotein
gene THBS4, and PDGFRB involved in blood vessel formation.
Domain B contained a majority of upregulated genes, with an
intermediate magnitude as compared to domain C (average
log2FC D 0.25). This domain was clearly associated with cellular

energetics, mainly oxidative phosphorylation. Many mitochon-
drial enzymes were found in this group, including CS, SDHA,
HADHA, COX7A2, ATP5B and several NADH dehydrogenases.

Importantly, the independent integration of DNA methyla-
tion information on top of the transcriptional network identified
a consistent pattern of inverse changes, possibly reflecting a

Figure 4. Identification of regions exhibiting positive or negative correlations between methylation and expression. (A) Distribution of Spearman
correlation between DNA methylation and gene expression calculated either including all pairs of genes/methylation positions (gray line) or only pairs
formed by a DMP and a DEG (black line). The 2 distributions are strongly different (P< 2.2e-16 Kolmogorov-Smirnov Test) and peaks of positive and neg-
ative correlation are highlighted after selecting changing sites after training. (B) The distribution of the Spearman correlation was stratified according to
the genomic location of the DMP with respect to the linked gene. (C) A Q-Q plot was obtained by plotting the observed P-values from the above correla-
tion analysis against those obtained under a uniform distribution. (D) A starburst plot illustrates the relationship between DNA methylation and expres-
sion changes, with a color density representation of the scatterplot of the pairs of genes/methylation positions. The horizontal axis is the FDR for each
gene multiplied by the sign of the fold change, while the vertical axis is the FDR for methylation multiplied by the sign of the fold change. Green dots
correspond to pairs where FDR<0.05. Numbers on each quadrant show the pairs (black) or genes (red) that fall in each region. Examples of expression/
methylation pairs are given for the indicated probes and genes. Points represent samples and are colored as shown on the corresponding legends (train-
ing: T1 D black, T2 D red; gender: M D blue, F D red). The correlation for the cases taken from the significant quadrants is visually explained by the train-
ing, while the correlation obtained for non-significant cases may be explained because of the individual levels of methylation and gene expression
being correlated at the subject level.
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coordinate transcriptional plan (Fig. 5 and Data set S13). In fact,
the upregulated domain C was associated with a significant
decrease in DNA methylation, whereas the downregulated
domain A had almost entirely corresponding positive changes in
DNA methylation. Concordantly, domain B contained a compa-
rable fraction of genes with corresponding positive or negative
changes in DNA methylation. Interesting genes whose methyla-
tion changes were opposite to those of transcription included the
collagens COL4A1 and COL4A2, and laminin LAMA4 that form
the basement membrane around skeletal muscle cells. For oxida-
tive metabolism, the enzymes MDH1 and a NADH dehydroge-
nase of the electron transport chain NDUFA8 represent
interesting examples. In domain A, the myosin phosphatase

PPP1R12A and TRDN, likely involved in regulation of calcium
release from the sarcoplasmic reticulum, both increase in methyl-
ation and decrease in expression.

Discussion

From this well-controlled, prospective and extensive human
study we were able to create a map of coherent, consistent and
biologically relevant DNA methylation changes in skeletal muscle
tissue in response to a lifestyle intervention known to improve
function and health. The significant changes in DNA methyla-
tion, that primarily occurred in enhancer regions, were to a large

Figure 5. Transcriptional network analysis reveals coordinated alternations in methylation and gene expression. A transcriptional network was
reconstructed using RNA expression data, showing 3 major domains (see Supplementary Methods S9 and Figure S7). The whole network is shown inside
the rectangle at the bottom of the figure, where each node is colored according to the corresponding fold change. The 3 major domains (A, B, C) are
zoomed and only genes with corresponding significant changes in DNA methylation are labeled. The color indicates whether the gene has correspond-
ing DMPs that significantly increase (red) or decrease (blue) their methylation levels. A dark gray color indicates that the gene has significant but discor-
dant changes in DNA methylation.
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extent associated with relevant changes in gene expression, even if
no causal relationship could be definitely determined.

The main findings of this study were that 3 months of endur-
ance training in healthy human volunteers induced significant
methylation changes at almost 5000 sites across the genome and
significant differential expression of approximately 4000 genes.
The genes associated with the DMPs that increased and
decreased in methylation, respectively, with training, represent
distinct ontologies. DMPs that increased in methylation were
mainly associated to structural remodeling of the muscle and glu-
cose metabolism, while the DMPs with decreased methylation
were associated to inflammatory/immunological processes and
transcriptional regulation. This suggests that the changes in
methylation seen with training were not a random effect across
the genome but rather a controlled process that likely contributes
to skeletal muscle adaptation to endurance training.

CpG methylation is subjected to spatial (tissue- or cell-specific
methylation) or temporal variability (age-dependent, disease-
associated, or environmental-mediated differential methylation).
In order to eliminate confounding factors, we formulated a
paired study design, where 2 samples from the same individual
were contrasted before and after the training intervention. We
verified, for selected sites, that the observed effect, despite small,
was specific for the trained leg, corroborating the hypothesis that
the measured changes in DNA methylation represent explicit
molecular manifestations of exercise training. Unlike certain dis-
eases, e.g., cancer, environmentally induced changes in DNA
methylation are typically small, and susceptible to large individ-
ual variation.9,29 By employing an intraindividual control leg for
validation of methylation and physiological changes, we mini-
mize any influence of diet or other environmental factors that
may otherwise be a challenge in environmental epigenomics.29,30

Here we successfully report the identification of significant and
ontologically coherent changes in DNA methylation in a human
genome-wide study of the effect of endurance exercise in muscle
tissue, which was made possible by the combination of a well-
controlled, prospective study design with a comprehensive, inte-
grative bioinformatic analysis.

A well-known source of heterogeneity in DNA methylation
studies is represented by the cell composition of the analyzed
sample. The epigenome varies between cell types and correcting
for cellular composition has been shown to reduce confounding
due to cell type bias in blood.24,31 Nevertheless, for complex solid
tissue samples, the correction for cell composition is not straight-
forward, as it would require the isolations and profiling of indi-
vidual cell types. An increased vascularization following
endurance exercise results in a higher endothelial cell content per
skeletal muscle fiber.32 In line with this, we confirmed that some
exclusive and non-exclusive endothelial markers were differen-
tially expressed after training (data not shown). Hence, we cannot
completely rule out the possibility that a minor fraction of the
observed changes in DNA methylation and/or gene expression
could reflect changes in cellular fractions.

Correlation of the changes in DNA methylation to the
changes in gene expression showed that the majority of signifi-
cant methylation/expression pairs were found in the groups

representing either increases in expression with a concomitant
decrease in methylation or vice versa. The fraction of genes show-
ing both significant decrease in methylation and upregulation was
7.5% of the DEGs or 2.3% of all genes detected in muscle tissue
with at least one measured DNA methylation position. Corre-
spondingly, 7.0% of the DEGs or 2.1% of all genes showed both
significant increase in methylation and downregulation. This
could reflect the classical view on promoter methylation with a
reciprocal relationship between methylation and expression. The
pairs showing a concordant change were skewed in the positive
direction. In fact, 5.6% of the DEGs or 1.7% of all genes were
significantly changing in the positive direction, whereas only
1.9% of the DEGs or 0.6% of all genes had significantly negative
changes. In total, we show that DNA methylation changes are
associated to gene expression changes in roughly 20% of unique
genes that significantly changed with training.

One previous study has investigated genome-wide alterations
in DNA methylation after long-term training using MeDIP-
ChIP and related those to gene expression changes by microar-
rays.13 Various methods are now available for determining CpG
methylation status, each potentially exhibiting advantages and
limitations and differing in the ability to detect differential meth-
ylation.29,33-35. We employed a method (450K arrays) that quan-
tifies methylation levels at specific loci and does not require
correction for CpG bias,35 coupled to RNA-seq, in order to
uncover the connection between the epigenetic and transcrip-
tional responses, and therefore obtain a deeper understanding of
the impact of regular exercise. The methodological differences
render a direct comparison more difficult, however, both studies
show reduced methylation of some genes involved in muscle
physiology, for example RUNX1 and COL4A1. In contrast, for
the gene THADA also highlighted in Nitert et al.13 we observe
an increased methylation of 2 CpG sites. Our sites are, however,
located in the gene body, while changes in Nitert et al. occur in
promoter regions, something that likely produces different effects
on transcription.

The network reconstruction resulted in domains classified
mainly as structural, metabolic and regulatory and suggested a
coordinated pattern of change in DNA methylation and gene
expression. Examples of structural genes include COL4A1,
COL4A2 and LAMA4. These genes have also been identified as
important for differences in responsiveness to endurance train-
ing,36 where methylation status could be part of the mechanism
behind variable training response. Among the metabolic genes,
MDH1 catalyzes the reversible oxidation of malate to oxaloace-
tate, utilizing the NAD/NADH cofactor system in the citric acid
cycle and NDUFA8 plays an important role in transferring elec-
trons from NADH to the respiratory chain. Regulatory genes
downregulated with training include MDM2, targeting p53 for
proteasomal degradation, and PPP1R12A, a subunit of myosin
phosphatase that is also capable of inhibiting HIF1AN-depen-
dent suppression of HIF1A activity. The resulting inhibition of
HIF1A could be an advantage for endurance adaptation as
HIF1A has a negative effect on oxidative metabolism.37,38

Recently it was shown that enhancers have dynamic methyla-
tion and that their methylation levels are more closely associated
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with gene expression alterations than promoter methylation in
cancer.19,20,39 In the present study, methylation predominantly
changed in enhancer regions with enrichment for binding motifs
for different transcription factors suggesting that enhancer meth-
ylation may be highly relevant also in exercise biology. Regions
with sites increasing in methylation were enriched for myogenic
regulatory factors or MRFs and myocyte enhancer factors, or
MEFs. The MRFs include Myf5, MyoD, myogenin, and Mrf4.
These are basic helix-loop-helix transcription factors of the myo-
genic lineage that control the determination and differentiation
of skeletal muscle cells in the embryo40. Of special interest in the
biology of endurance training may be that MRFs, through bind-
ing to the PGC-1a core promoter, can regulate this well-studied
co-factor for mitochondrial biogenesis.41 Animal studies indicate
that MyoD promotes slow-to-fast fiber transformation while
myogenin could possibly work as an ultimate transcription factor
binding directly to promoters of mitochondrial enzymes, thereby
promoting a more oxidative profile of muscle tissue.

The myocyte enhancer factor 2 (MEF2) transcription factor
links extracellular signals (partly through regulation of class IIa
histone deacetylases, HDACs) to the activation of genetic pro-
grams involved in cell differentiation, proliferation, morphogene-
sis, survival and apoptosis in many different cell types.42 KO
experiments suggest that some of the MEF2 isoforms promote
slow fiber phenotype during development.40

That endurance training led to an increased methylation in
enhancer regions containing motifs for the MRFs and MEFs is
somewhat counterintuitive since it should lead to the repression
of the action of the above discussed transcription factors. Possible
explanations include either: a) a dynamic regulation of enhancer
accessibility and activity, involving active methylation as an inac-
tivation mechanism at the time (i.e., 3 months) when morpho-
logical changes have already taken place and a negative feedback
should be provided; b) a confounding effect due to increased
representation of different cell types after training, which would
result in the detection of a change in methylation because of the
underlying differences in methylomes between muscle and non
muscle cell types and c) possible incompletely understood phe-
nomena such as the differential methylation that inhibits tran-
scription of an inhibitory RNA molecule, as it was shown for
p15.43 However, these factors regulate a large number of genes
and there are several that decrease with training in this study,
including CDCH15, MYH3, TNNT2, RYR1 and SH3GLB1,
which would be expected from an increased enhancer methyla-
tion. Also, the expression of MEF2A itself decreased with
training.

Regions with sites decreasing in methylation with endurance
training were enriched for the ETS family of transcription fac-
tors, a large group with a well-conserved binding motif. A reduc-
tion in methylation with training in enhancer regions containing
this motif potentially allows for further activation of their
response genes. There are several members of this group that are
known to regulate exercise-responsive genes, thus proposing an
epigenetic regulation with endurance training. GABPA, also
known as nuclear respiratory factor 2, controls expression of sev-
eral genes involved in mitochondrial respiration in human

skeletal muscle44 and is itself regulated by the transcriptional
coactivator PGC1a.45 Another interesting example is ETS1, that
targets genes important for endothelial migration e.g., matrix
metalloproteinases, angiopoietin 2 46 and the vascular endothelial
growth factor receptor 2 (KDR),21 which increase in expression in
this study. ELF1 targets TIE1 and TIE2,21 also important factors
in angiogenesis known to increase with endurance training in
human skeletal muscle.47 The ETS family of transcription factors
have been shown to interact with RUNX148 which has been
identified as one potential key transcription factor in the regula-
tion of the endurance training induced transcriptome.36 The
mechanisms responsible for inducing these training specific
effects are yet to be described. However, altered metabolism is
known to induce epigenetic changes and metabolites from the
citric acid cycle such as a-ketoglutarate are used as substrates for
several of the enzymes known to catalyze methylation reactions.49

In conclusion, this study demonstrates that the transcriptional
alterations in skeletal muscle in response to a long-term endur-
ance exercise intervention are coupled to DNA methylation
changes. We suggest that the training-induced coordinated epige-
netic reprogramming mainly targets enhancer regions, thus con-
tributing to differences in individual response to lifestyle
interventions. We provide a valuable and novel perspective on
the fields of human physiology and environmental epigenomics,
showing that a physiological health-enhancing stimulus can
induce highly consistent modifications in DNA methylation that
are associated to gene expression changes concordant with
observed phenotypic adaptations.

Materials and Methods

Human physiological measurements
The study, labeled EpiTrain (“Epigenetics in Training”), was

approved by the Ethics Committee of Karolinska Institutet and
conformed to the Declaration of Helsinki. Twenty-three young,
sedentary volunteers (Table 1) trained only one randomized leg
during 3 months, and the other leg was used as an untrained
intraindividual control leg. Two one-legged knee-extension per-
formance tests were conducted before and after the training
period. Skeletal muscle biopsies from vastus lateralis were taken
before and 24h after the last training session from both legs. The
post-training performance tests were conducted 3–6 d after the
biopsies. Enzyme activity assays included citrate synthase (CS)
and b-HAD activity. For details, see Supplementary Methods S9.

DNA methylation methods
The total amount of DNA methylation (at CCGG sites) in

the genome, before and after training in both legs, was analyzed
with LUMA (LUminometric Methylation Assay).16 Genome-
wide DNA methylation profiling was generated with the
Infinium HumanMethylation450 BeadChip array on bisulfite-
treated DNA50 from biopsies collected before (T1) and after
training (T2, trained leg), for 17 subjects in total. Bisulfite pyro-
sequencing was adopted for technical validation. We analyzed
global hydroxymethylation with a colorimetric antibody-based
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method from Epigentek according to the manufacturer’s specifi-
cations. More details are given in Supplementary Methods S9.

Bioinformatics analysis of DNA methylation data
We employed a pre-processing and normalization pipeline as

reported previously.51. Color-bias adjustment, quantile normali-
zation, probe type bias adjustment 52 and batch correction were
performed. For further details see Supplementary Methods S9
and Marabita et al.,51 where the current dataset was named
“Data set B.” Differentially methylated positions (DMPs) were
defined using limma on M values,53 including the group (T2 vs.
T1) and the subject as covariates, in order to account for the
paired design. DMPs were selected if FDR < 0.05. For sample
clustering, principal component analysis was performed using
only data from the DMPs. Standard Illumina annotation was
used to annotate methylation data. Additional sources included
NIH Roadmap Epigenomic (http://www.roadmapepigenomics.
org) data for skeletal muscle and ChromHMM chromatin seg-
mentation tracks for HSMM cell line in Encode (http://encode-
project.org). For each annotation category the relative fraction of
positions located within each feature type was calculated for
DMPs, non-DMPs and the entire array. GREAT (http://great.
stanford.edu) was used to discover functional categories associ-
ated with DMPs. The enrichment for known transcriptional
motifs was tested with HOMER (http://homer.salk.edu/homer/)
and motifs were clustered using STAMP (http://www.benoslab.
pitt.edu/stamp/index.php). Full details are given in Supplemen-
tary Methods S9.

RNA sequencing
Total RNA was used to prepare libraries, which were

sequenced as paired-end, 2 £ 100 bp on an Illumina HIseq2000
and generated an average of 21 million paired-end reads per
sample.

Briefly, we performed quality control, trimming, mapping,
PCR duplicate removal and gene count summarization.
EdgeR 54 was used to normalize the data and extract differentially
expressed genes (DEGs). We included the group (T2 vs. T1), the
library preparation and the individual as covariates. DEG were
selected if FDR<0.05. Multidimensional scaling plots were used
for sample clustering. Gene ontology analysis was done taking
length bias into account, as implemented in goseq,55 and
enriched KEGG pathways were visualized with pathview.56 Full
details are given in Supplementary Methods S9. The baseline
muscle transcriptome has been described elsewhere,57 where a
subset of the samples before training (n D 12) has been analyzed.

Integration between DNA methylation and transcriptomics
A list of genes and the corresponding measured DNA methyl-

ation positions was obtained and correlation was calculated for
each pair. The distribution of Spearman rho statistics between
DNA methylation and gene expression was calculated either
including all pairs of genes/methylation positions or only pairs
formed by a DMP and a DEG. Transcriptional networks were

reconstructed from gene expression data applying the Mutual
Information (MI) method developed in ARACNE.58 The result-
ing network components were visualized and analyzed with
Cytoscape. For each independent network domain, gene ontol-
ogy was tested using the BiNGO tool (http://www.psb.ugent.be/
cbd/papers/BiNGO/Home.html). For additional information
see Supplementary Methods S9.

Data availability
Data are available on GEO under the accession numbers

GSE60655 (DNA methylation), GSE58608 and GSE60590
(gene expression).
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